1 Second-Order Linear ODEs

1.1 Concepts

1. This is for linear, homogeneous, constant coefficients, second-order differential equations. It is of the form

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

To solve this, we find the roots of the characteristic polynomial: $a r^{2}+b r+c=0$. Then depending on the roots, we can determine the general solution:

Roots	$r_{1} \neq r_{2}$	r, r	$a \pm b i$
General Solution	$c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}$	$c_{1} e^{r t}+c_{2} t e^{r t}$	$c_{1} e^{a t} \cos (b t)+c_{2} e^{a t} \sin (b t)$

Once we find the general solution, we can find the solution satisfying our initial conditions by plugging them in and solving for c_{1}, c_{2}. An Initial Value Problem (IVP) is one where the initial conditions are of the form $y\left(t_{0}\right)=y_{0}, y^{\prime}\left(t_{0}\right)=y_{0}^{\prime}$. You are told the value of y and y^{\prime} at the same time t_{0}. A Boundary Value Problem (BVP) is one where the initial conditions are of the form $y(a)=y_{a}, y(b)=y_{b}$. You are told the value of y at two different times $t=a, b$. An IVP has a unique solution, a BVP may have 0,1 or ∞ solutions.

1.2 Problems

2. True FALSE It is possible for there to be no solutions to an initial value problem.
3. TRUE False It is possible for there to be no solutions to a boundary value problem.
4. True FALSE It is possible for a BVP to have only 2 solutions.

Solution: A BVP can have 0,1 , or ∞ solutions.
5. Solve the initial value problem given by $3 y^{\prime \prime}=15 y^{\prime}-18 y$ and $y(0)=0$ and $y^{\prime}(0)=1$.

Solution: We bring all the y 's to one side and get $3 y^{\prime \prime}-15 y^{\prime}+18 y=0$ and our characteristic equation is $3 r^{2}-15 r+18=3\left(r^{2}-5 r+6\right)=3(r-2)(r-3)=0$ so $r=2,3$. So the solution is of the form $y(t)=c_{1} e^{2 t}+c_{2} e^{3 t}$. Plugging in the initial conditions gives $y(0)=c_{1}+c_{2}=0$ and $y^{\prime}(0)=2 c_{1}+3 c_{2}=1$ which solving gives $c_{2}=1$ and $c_{1}=-1$. Therefore the solution is $y(t)=-e^{2 t}+e^{3 t}$.
6. Solve the initial value problem $2 y^{\prime \prime}+4 y^{\prime}+2 y=0$ with $y(0)=0, y^{\prime}(0)=1$.

Solution: We guess the solution is of the form $y=e^{r t}$. Plugging this in gives $2 r^{2} e^{r t}+4 r e^{r t}+2 e^{r t}=2 e^{r t}\left(r^{2}+2 r+1\right)=0$ and hence $(r+1)^{2}=0$ so $r=-1$ is a double root. Therefore, the general solution is of the form $y=c_{1} e^{-t}+c_{2} t e^{-t}$. Plugging in our initial conditions gives $y(0)=0$ or $0=c_{1} e^{0}+c_{2}(0)\left(e^{0}\right)=c_{1}$ and $y(t)=c_{2} t e^{-t}$ and $y^{\prime}(t)=c_{2} t\left(-e^{-t}\right)+c_{2} e^{-t}$ and plugging in $y^{\prime}(0)=1$ gives $c_{2}(0)+c_{2}(1)=c_{2}=1$ so the solution is $y(t)=t e^{-t}$.
7. Solve the boundary value problem of a mass on a spring given by $x^{\prime \prime}=-4 x$ and $x(0)=$ $0, x(\pi)=0$.

Solution: We bring the x 's on one side to get $x^{\prime \prime}+4 x=0$ and our characteristic equation is $r^{2}+4=0$ with roots $0 \pm 2 i$. Therefore, the solution is of the form $x(t)=c_{1} e^{0 t} \cos (2 t)+c_{2} e^{0 t} \sin (2 t)=c_{1} \cos (2 t)+c_{2} \sin (2 t)$. Plugging in the boundary conditions give $c_{1} \cos (0)+c_{2} \sin (0)=c_{1}=0$ and $x(\pi)=c_{1} \cos (2 \pi)+c_{2} \sin (2 \pi)=$ $c_{1}=0$ so the solution is of the form $x(t)=c_{2} \sin (2 t)$. Thus, there are infinitely many solutions.
8. Solve the boundary value problem given by $y^{\prime \prime}=-y$ and $y(0)=0, y(\pi)=1$.

Solution: The differential equation is $y^{\prime \prime}+y=0$ so the characteristic equation is $r^{1}+1=0$ or $r= \pm i$. Therefore, the solution is of the form $y(t)=c_{1} \sin (t)+c_{2} \cos (t)$. The boundary values give $y(0)=c_{2}=0$ and $y(\pi)=-c_{2}=1$ which cannot happen. Therefore, there are no solutions to this equation.
9. Find the second order linear ODE such that $y(t)=e^{2 t} \sin (t)$ is a solution to it.

Solution: Since $e^{2 t} \sin (t)$ is a solution, this tells us that the roots are $2 \pm i$. Now in order to find the characteristic equation, we just multiply $(r-(2-i))(r-(2+$ $i))=r^{2}-4 r+5$. So, the ODE is $y^{\prime \prime}-4 y^{\prime}+5 y=0$. The initial conditions are $y(0)=, y^{\prime}(0)=1$.
10. What is the smallest value of $\alpha>0$ such that any solution of $y^{\prime \prime}+\alpha y^{\prime}+y=0$ does not oscillate (does not have any terms of sin, cos).

Solution: The characteristic equation is given by $r^{2}+\alpha r+1=0$. The roots are $\frac{-\alpha \pm \sqrt{\alpha^{2}-4}}{2}$ and this does not have any terms of \sin, \cos whenever $\alpha^{2}-4 \geq 0$ or when $\alpha^{2} \geq 4$. Therefore, we must have $\alpha \geq 2$ and the smallest value is $\alpha=2$.

